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Abstract

In this paper, the vibration problems of some repetitive structures, including symmetric, cyclic periodic, linear pe-
riodic, chain, and axi-symmetric structures is investigated. Eigen-value problems derived from the vibration equations
of these structures are established based on their continuous models. The special properties of the structural modes of
these structures are deduced. Applying these properties can provide effective reduction approach to solving the natural
and forced vibration problems of these structures by either numerical or experimental methods. Furthermore, these
properties can be applied in other aspects such as evaluating the reasonableness of the discrete models of these repetitive
structures.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Repetitive structures are very common both in engineering and in natural world. A structure can be
defined as repetitive when it is assembled in a proper way by a group of identical substructures. These
substructures are identical in terms of geometric shape, physical properties, boundary conditions, and
connections with other substructures.

Generally, the modes and natural frequencies of a structure are determined by the nature of the whole
structure. However, for a repetitive structure, by virtue of its special repetitive property, the modes and
natural frequencies of the whole structure can be determined from those of its single substructure. Thus,
effort of calculating or measuring the free and forced vibration of these kinds of structures can be con-
siderably reduced. Up to now, many papers have been discussing the dynamic properties of the repetitive
structures: Evensen (1976) studied the vibration of symmetric structures; Thomas (1979) presented some
results concerning the vibration of cyclic periodic structures; A series of work was done on analyzing the
vibration of periodic structures using the U-transformation method (Cai and Wu, 1983; Cai et al., 1990;
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Chan et al., 1998); Hu and Chen (1988) analyzed the vibration of cyclic periodic structures using Cy group
method; Zhong (1991) gave several approaches for solving the eigen-value problems of linear periodic
structures; Wang and Wang (2000) provided some simplification methods for solving the discrete eigen-
value problems of specific kinds of repetitive structures. Results of these researches have been widely used in
the design of many kinds of FEM software.

Some other researchers, including Brillouin (1946) and Mead (1973, 1975a,b) and Mead and Bansal
(1978) have studied the wave propagations in linear periodic systems. Mead has done lots of work on the
approximate solution of the propagating wave of linear periodic systems, using the “propagation con-
stant”. Since only the exact solution of standing waves are concerned in the present paper, the propagating
wave motion is not discussed.

It is necessary to extend the existing research results of discrete models of repetitive structures to con-
tinuous models. In most current literatures concerning the vibration problems of repetitive structures, for
the sake of simplifying calculation, discrete models of structures are studied and eigen-value problems of
matrices with repetitive properties are solved. In this paper, continuous models of repetitive structures are
studied. Although analyzing eigen-value problems of differential equations may be more difficult in
mathematics, results of continuous models are more fundamental in nature. The derived qualitative
properties of the structural modes (and frequencies) are of great importance in physics. They can be used to
simplify the numerical calculation and the experiments of natural and forced vibration problems. In ad-
dition, they can be used to evaluate the correctness of the data obtained in the numerical calculation and
the experiments of vibration problems, and to identify the reasonableness of discrete models of repetitive
structures.

In this paper, the unique qualitative properties of natural and forced vibration of some repetitive
structures, including symmetric, cyclic periodic, linear periodic, chain and axi-symmetric structures,
are investigated. Each structure is analyzed in three steps: (1) Eigen-value problem of its differential
vibration equation is established based on the continuous model of the structure; (2) The qualitative
properties of its modes are deduced using the specific transformation on its displacement function field; (3)
Application of the derived properties to simplifying the calculation and the experiment of natural and
forced vibration problems is discussed, and some examples of application to the real structures are pre-
sented.

2. Symmetric structures
2.1. Model and equation

A structure is defined as mirror-symmetric or symmetric for short, if its geometric shape, physical
properties as well as boundary conditions are all symmetric with respect to a plane (or a strait line) that is
called as a symmetric plane (or a symmetric line).

An example of a symmetric structure is illustrated in Fig. 1. Plane x = 0 in a Cartesian coordinate system
is the symmetric plane. It divides the whole structure into two substructures, no. 1 and no. 2, both of which
are identical in shape, physical properties, and boundary conditions. Two Cartesian coordinate systems are
set respectively in substructures no. 1 and no. 2, the directions of their y and z axes are the same, while those
of their x axes are opposite to each other. The generalized displacement vectors of the two substructures are
denoted by w; and w, respectively, and the generalized displacement vector of the whole structure is
w=(w,w).

The eigen-value equation and boundary conditions are expressed as follows,

Lw,—o*Mw;, =0 inQ i=1,2 (1)
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Fig. 1. A symmetric structure.

Bw,=0 ondoR i=12 (2)

where L, M, and B are elastic, mass, and boundary differential operators or differential operator matrices
respectively. €2 is the region of a substructure and 0f2 is its boundary excluding the common boundary
where x is equal to 0.

It should be noted that on the common boundary of substructure no. 1 and no. 2, their generalized
displacements and generalized internal forces satisfy the continuous conditions, which are expressed in
terms of differential equations as follows,

lelz—J1W2 onx=20 (3)

J2W1 :szZ onx=20 (4)

As shown in Fig. 1, the lower part of the structure is a three-dimensional elastic body and the upper part
is composed of two rectangular plates. On their common boundary (plane x = 0) in the elastic body, the
continuous conditions of the displacements and stresses of substructure no. 1 and no. 2 are

1 0 0 1 0 O
) 0 uj U
9 9 9 0
dy Ox vy p=—|0y ox Uy
0 0 wi 0 0 %)
| Oz 0 Ox Oz 0 Ox
ro 1 0 ” 0 1 0 "
g 0 1 o b= g 0 1 vy
_a 0 0 Wl a O 0 W2
The elastic and rigid constraints between substructure no. 1 and no. 2, if exist, are written as follows:
J'ﬁfwl |x,~ = 7'?/'w2|§, ] = 17 27 ceey [ (5)
Jrjw2|5j :7rjwl|§j J: 1727"'71 (6)

For example, for the structure shown in Fig. 1, there are three springs and one rigid rod connecting the two
plates, which means / = 4 and Eq. (5) is written as

Q1 (Sl) + k1 sin2 OCLH(S]) = —k1 SiIl2 OCMz(Sz)

Ql (Sz) + k1 Sil’l2 Otul(Sz) = —k1 Sil’l2 OCL[Q(SI)
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01(s3) + ksui (s3) = —ksua(s3)

23] (S4> = —142(5'4)

where, Q(s;) corresponds to the spring forces acting at point s; on the plates of substructures no. 1, and «
represents the angle between the spring and the plate. Eq. (6) can be expressed in a similar way. Due to the
continuous conditions and the constraints, w; and w, are coupled. The vibration equations for the whole
structure are expressed in Egs. (1)-(6).

2.2. Simplification of eigen-value problem and qualitative properties of modes

The original displacements {w;,w,} can be transferred into another set of generalized displacements
{q1,9>} as follows:

n= Uy =se e A = alile s e "

where I is a unit matrix with the same dimensions of the displacement function field w;, the first and the
second terms on the right side of the last equal-sign correspond to symmetric and anti-symmetric modes
respectively. The transformation matrix is an orthogonal one, which means

SEe )
In Eq. (8), I is a unit matrix whose dimension is double of that of w;. Rewrite the Eqgs. (1)-(6) as follows:

(L 0 Wi M 0 wi | . ,

10 L}{Wz}_w[o M}{wz}_o in 2 (92)

g g]{xl}:ﬂ on 09 (9b)

L 2

_Jl Jl wi - .

/2 —JZHWz}_O onx =0 (9¢)

[Ty 07w \| _[7, 07[0 I]fmw .

L 0 Jr_,-]{wz}&_[() 7,7 I 0w || i=12,....p (9d)

where 2" and 09’ are the region and the boundary of the whole structure. Substituting Eq. (7) into Egs. (9),
then pre-multiplying (9a), (9b) and (9d) with ST, the uncoupled equations of ¢, and ¢, are derived as
follows:

Lg,— o*Mg, =0 in Q
Bg; =0 on 082
. (10)
Jig;=0 onx=0i=1,2
Jogil, = £l ql, (Fifi=1,-ifi=2) j=1,2,...,1

We have two conclusions regarding to the symmetric structure: (1) The eigen-value problem of the whole
structure expressed in Egs. (9) can be simplified into two eigen-value problems of a single substructure
expressed in Egs. (10). Eq. (7) indicates that the solution of Egs. (10) is the symmetric mode of the whole
structure for i = 1, and it is the anti-symmetric mode for i = 2; (2) The mode of a symmetric structure is



D. Wang et al. | International Journal of Solids and Structures 40 (2003) 5477-5494 5481

|

|
2 0
@

X
|
2
i S s
0 7

® ° ©

| —

Fig. 2. Reduction of rhombus beam (a) original symmetric rhombus beam, (b) equivalent substructure for symmetric mode and
(c) equivalent substructure for anti-symmetric mode.

either symmetric, or anti-symmetric, or the linear combination of a symmetric mode and an anti-symmetric
mode with the same natural frequency.

2.3. Application

(1) When calculating the modes and natural frequencies of a symmetric structure, we only need to do
calculation of one half of the structure. First, proper constraints and boundary conditions, representing
symmetric or anti-symmetric deformation of the whole structure, need to be given on the symmetric plane.
Then two eigen-value problems of one of the substructures are solved separately. The obtained frequencies
of one substructure are exactly those of the whole structure. The modes of the whole structure can be
obtained by expanding symmetrically or anti-symmetrically the obtained modes of one substructure. The
advantage of this method is that the DOF required for the computation may be reduced by one half.

If we want to obtain the modes and natural frequencies of a symmetric structure by experiment, we only
need to do measurement on one half of the whole structure and at one point on the other half. The modes
of the whole structure can be expanded from the modes of its one substructure, either symmetrically or anti-
symmetrically, according to whether the obtained data at two symmetric points on the structure are
symmetric or anti-symmetric. However, if the data at two symmetric points indicates that the mode is
neither symmetric nor anti-symmetric, we can claim that it implies a repeated frequency. We may get the
symmetric and the anti-symmetric mode corresponding to the same frequency by making some adjustment
in the experiment.

2.4. Examples
The Rhombus beam shown in Fig. 2 has a free—free boundary condition. It can be simplified as a sliding-

free beam or a pinned-free beam, both of which have analytic solutions (Kirchhoff, 1879) for their eigen-
value equations.

3. Cyclic periodic structures
3.1. Model and equation
A structure can be termed cyclic periodic if it is in form of an assembly of identical substructures that are

distributed evenly on a circular ring. Once the geometric shape, physical properties, boundary conditions
and its mutual connections with other substructures of one substructure are defined, those of the remainder
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Fig. 3. A cyclic periodic structure.

of the whole structure can been obtained by rotating the structure repeatedly by angle y = 27/n, where n
represents the number of substructures. An example of a cyclic periodic structure is illustrated in Fig. 3.
Denote the kth substructure of a cyclic periodic structure by €2, two common boundaries connecting kth
substructure with the (k — 1)th and the (k + 1)th substructure respectively by b, and b;, and other
boundaries by 0€2. The eigen-value problem of the differential equation for the whole structure is as follows:

Lw,—o*Mw, =0 k=1,2,....n in® (11)

Bw,=0 k=1,2,...,n ondfQ (12)

where w; represents the mode on the kth substructure in terms of function or function vector. L, M and B
represent the elastic, mass and boundary conditions operators or operator matrices of a substructure.

If common boundaries exist between two adjacent substructures, generalized displacements and gene-
ralized internal forces on the common boundary are continuous,

JOWk|b; :J()Wk+1|b;+l k= 1,2,...,}’1 (13)

where w, .1 = wy, b, is by, J, represents a differential operator or differential operator matrix.
If the elastic and rigid constraints between two substructures exist, they are expressed as follows:

Towily, = Tywely, k=12, np=12..n-1;=12..1, (14)

where J,; (p =1,2,...,n — 1) denotes a differential operator or differential operator vector. The subscript
of wy,, is set as i if it reaches to n + i. The pth equation indicates the constraints between the region s,, (a
point or a region of one to three dimensions) in the kth substructure and the region 5,; in the (k + p)th
substructure. When no constraint exists between the kth substructure and some other substructures, the
corresponding equations in (14) will not appear.

For example, for a structure shown in Fig. 3, a spring is linking the point s; in the kth substructure with
the point 5, in the (k + 1)th substructure. Therefore, the first equation of (14) indicates a spring force acting
at s; induced by relative displacement of point s; to 5;. The point s, in the kth substructure is rigidly
connected with the point 5, in the (k + 2)th substructure, which in the second equation of (14) the dis-
placements of point s, and those of point 5, should be equal. This example illustrates the case when p = 1,2,
L=hL=1
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Due to the continuous conditions (13) and the constraints (14) between two substructures, wy
(k=1,2,...,n) are coupled with each other, we need to solve the coupled equations of w; to w; if we try to
calculate the natural frequencies and modes of the whole structure using Eqgs. (11)—(14) directly.

3.2. Simplification of eigen-value problem and qualitative properties of modes

The original displacement w can be transferred into another set of generalized displacements as follows:

w={w,wy,...,w} =[R R - RJ{q ¢ - 4} =Rg
1 y .
R, = NG [1,e"1,... "=yt (15)
where matrix R is a U matrix, i.e.,
RR=1 (16)
The eigen-value equation of the whole structure, Eqgs. (11)—(14), are rewritten as follows,

L'w—o’Mw=0 inQ (17)
Bw=0 ondQ (18)
Twly = TyYul, (19)
Towl, =Ty Ywl  p=1,2,....n—1j=12,..1, (20)

where €' and 0’ are the region and the boundary of the whole structure, L', M, B', J;,, and I Tl,j
(p=1,2,...,n—1) represent the block diagonal matrices of L, M, B, Jy, and J,;, J,; respectively.

Moreover,

- - - p+l -
(VI § 0 ¢ 0O I 0 e O
(VU § 0 ¢ 0O O I e O
[ ] [ ] [ ) [ ] [ ) [ ) [ ] [ ) [ )
Y = o o YY=10 0 0 o o o [ (21)
o o I 0 0O ¢ o e 0
0 I e © o o o o o
|1 0 | |0 ¢« 1T 0 0 e 0]
P
where Y? is termed row-switch transform matrix and
R'Y'R = diag(e™1 e%'[ ... ")) (22)

Substituting Eq. (15) into Egs. (17)—(20), then pre-multiplying with ﬁT, and applying Eq. (16) and (22), we
may obtain
Lqg, — o’Mg, =0 in Q
Bg. =0 on 022
Jod, |y = Joe"q,|,-

Jp./quspj :7I~’jeipnl/qr|§p/ r= 1727"'1’1 p: 1727"'7’1_ 17 ]: 1727'-"117
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In Eqgs. (23), ¢, = ¢/ +i¢’ (r = 1,2,...,n) are uncoupled. It can be verified that the complex solution of Egs.
(23) corresponding to » = n — s is conjugated with that corresponding to r = s.

As to a cyclic periodic structure, we come to two conclusions: First, for a cyclic periodic structure, the
eigen-value problem of the whole structure expressed in Eqgs. (17)—(20) can be simplified into » eigen-value
problems of one single substructure expressed in Eq. (23). By utilizing Eq. (15), the mode of the whole
structure can be obtained from w") = ut) 4 iy,

u i 1 0 1
u, cosryl —sinryl
u” u, | |cosr(n—1)I —sinr(n—1)yI| (4.
{v<r)}_ v’i — 0 I q;‘ }’—1,2,...,7’! (24)
v, sinryl cosriyl
v | sin(n — )rpl  cos(n — 1)rpl |

Second, the modes of a cyclic periodic structure can be divided into n groups expressed as (24). For each
group of modes, a specific phase lag exists between two adjacent substructures,

wily = e (25)

These modes can be further categorized into three following classes,
(1) The displacements of every substructure are identical, which indicates that in Eq. (24), » = n, i.e.

w(") = {qrm qn? e 5qn}T (26)

If n is even, in Eq. (24) » = n/2, and the displacements of two adjacent substructures are opposite, i.e.

n T
W( /2= {qn/Z’ _qn/27 ) _qn/Z} (27)
In any other case when r # n, n/2 (even n), there exist two modes associated with one repeated frequency
3 r r r -2 -1
d)d)) o uD and W W0 r:1,2,...,n (even n) or " (odd n)

2 2

and the relationship between them is
”1(21 = cos rxpu,ir) —sin rl//v,({")

v = sinrpu” + cos rw.

3.3. Application

The process of calculating the frequencies and modes of a cyclic periodic structure can be divided into
two steps. First, the real eigen-value equations of coupled ¢” and ¢’ are solved as follows,

Ly — o’Mq. =0 Lqg.—o’Mg. =0 in Q (29)
By.=0 Bg.=0 ondR (30)

Jod |, = Jo(cosryq, — sinrjq))|,-

,- o ,- (31)
'qur‘/ﬁ = '10(8111 leqr + cos rlpqr)|b’
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T}, = Jpi(cos g, — sinrpyg))|;

Jquf~|s,,/ = J,,(sinrpyq) + cos ”qui)kp}- (32)
2 ~1

p=12...n—1 j=12...1, r= 1,2,...,”2 (if n is even) or 5 (if nis odd)

Second, according to Eq. (24), the modes of the whole structure can be derived from ¢~ and ¢'. It should be
noted that when » = n or r = n/2 (if n is even), equation (23) and its solution are real. Therefore, we only
need to solve the eigen-value equations of ¢, and ¢, , on a single substructure.

(1) If we suppose that each substructure of a discrete cyclic periodic system has m DOF, the eigen-value
problem of the whole structure expressed in Egs. (11)-(14) will have n x m DOF. However, for the un-
coupled eigen-value problem expressed in Eqgs. (29)—(32), we only need to solve (n — 2)/2 (if n is even)
or (n—1)/2 (if n is odd) eigen-value problems with 2 x m DOF and two (n is even) or one (n is odd)
eigen-value problem with m DOF. Therefore, the computational complexity is considerably reduced.

(2) If we want to obtain the modes and natural frequencies of a cyclic periodic system by experiment, we
can follow two steps: (1) Measure only the mode ¢ on a single substructure. (2) Select a point s on this
substructure where ¢(s) is not equal to zero and measure ¢(s) at the same point on its adjacent substruc-
ture. If the two ¢(s) are identical, it indicates that the mode of the whole structure is in the form of
w =[I I --- I]"q. If the two g(s) are opposite, the mode of the whole structure is in the form
of w» =[I —I ... —I|"q.If two modes, ¢, and ¢,, on a single substructure are detected to be
associated with a same natural frequency and at a same point s of two adjacent substructures, the fol-
lowing relations exist,

‘Il,k+1(S) = COS”‘/J‘Il,k(S> - Sin”pqz,k(s)

Gr441(s) = sinrfq, 4 (s) + cosrq, ;. (s)

and thus modes #,. and v, represented by exp.(24) are two modes with repeated frequencies.
3.4. Examples

As shown in Fig. 4, the plane frame is composed of four uniform beams rigidly connected with each
other. The length of each beam is / and the four connection corners are pinned supported. Two kinds of

No.4

55,5, Sy }‘

Sl
S
No3 55, 5,5, No.l
S
Sl

No.2

Fig. 4. A plane frame assembled by four beams.
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constraints exist in this structure: (1) The transverse displacement of the point s; on the kth beam should be
identical with that of the point 5; on the (k + 1)th beam; (2) A spring, with the spring constant &, connects
the middle point of the kth beam with that of the (k + 2)th beam. The transverse displacement of the beam
is denoted by w, while w' represents its differential term with respect to the coordinate parallel to the axis of
the beam.

The continuous conditions and constraints are expressed as following:

Wk(l) = Wk+1(0) =0
wi(D) = wi 1 (0) wi(l) = wi'y, (0)

wi(s1) = wip1(51)

/ / /
(5) +w(3) =Ha(3)
The modes and frequencies of this structure can be divided into three groups:

(1) When r = 4, g4 denotes the mode of the beam shown in Fig. 5(a).
4,(0) = q;(1),  43(0) = q;(1)

qa(s1) = q4(51)

/ /
) = okl £
04 ( 3 ) qa ( 3 )
The mode of the whole structure is
w={1 1 1 1} g

(2) When r = 2, ¢, denotes the mode of the beam shown in Fig. 5(b).
3>(0) = —¢5(1), 45(0) = —g5(I)

q2(s1) = —q2(51), Q(é) - —2qu(§)

The mode of the whole structure is
w={l -1 1 =1} ¢k
(3) When r =1, g, denotes to the mode of the beam shown in Fig. 5(c).
¢,(1) =iq,(0), ¢;(1) =iq;(0)

Fig. 5. Equivalent structures.
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q1(s1) = iq:1 (1)

The mode of the whole structure is

w={l i —1 —i}'q(x)
This problem is a complex eigen-vector problem associated with real eigen-values. It can also be ex-
pressed as real eigen-vector problems with real and imaginary parts coupled with each other.

4. Linear periodic structures

A linear periodic structure is composed of an assembly of identical substructures distributed evenly on a
straight line (or a circular arc). All the substructure are identical in terms of the geometric shape, physical
properties, boundary conditions and the constraints with other substructures, expect for the two sub-
structures at the ends that can have peculiar boundary conditions.

For some special kinds of linear periodic structures, their eigen-value problems can be solved by utilizing
the method for cyclic periodic structures. The calculation process is divided into two steps: (1) Extend the
original structure by one or two times; (2) Generate a cyclic periodic structure by joining the two ends of the
extended structure. The structure suitable for this method should satisfy two following pre-requisites:

All of its substructure should be symmetric, which means its geometric shape, physical properties,
boundary conditions, and constraints with other substructures are all symmetric. Therefore, the newly
generated cyclic periodic structure is also symmetric.

At the two ends of the original linear structure, the boundary conditions should conform to the sym-
metric or anti-symmetric modes restrictions on the corresponding symmetric planes of the newly generated
cyclic periodic structure.

5. Chain structures
5.1. Model and equation

A chain structure is a special type of a linear periodic structure. A structure is called a chain structure
when it is in the form of an assembly of identical substructures distributed evenly on a straight line (or a
circular arc), and satisfies the following three restrictions: (1) Between any of the two substructures, there is
no common boundary but elastic or rigid constraints without mass; (2) The constraints between one
substructure and its preceding one should be identical to that between it and its following one; (3) The two
ends of the structure should be fixed. These three restrictions make the chain structure unique compared
with ordinary linear periodic structures. The spring—mass system illustrated in Fig. 6 is a typical example of
a chain structure.

Another example of a chain structure is illustrated in Fig. 7. For each substructure, a spring connects the
point s; on it with the points s, on its neighbors, another spring links the point s, on it with the points s; on

JINMS L -S4t

Fig. 6. Spring—mass system.
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Fig. 7. Another chain structure.

its neighbors, the third spring connects point s; with the same point on its neighbors, and point sy is rigidly
connected with the same point on its neighbors.

As a special kind of linear structure, the eigen-value equation of a chain structure can be solved by the
general method mentioned in the preceding section for linear structures. However, by virtue of its distin-
guished feature, a more simple approach can be used.

If a chain structure is composed of n substructures, its eigen-value problem of differential equation is as
follows:

Lw, — o*Mw, =0 in Q (33)
Bw;, =0 on 022 (34)
Jjwk\s/_:7jwk+1|§/+7jwk,l|§/ k:1727...,l’l j:1,2,...,l (35)

where w;, denotes the generalized displacement vector of the kth substructure and wy = w,,; = 0. Eq. (35)
represents the connections between two adjacent substructures. Considering the structure shown in Fig. 7,
Eq. (35) is re-expressed as follows:

Ok(s1) + 2ky sin” owy(s1) = ky sin® o[y 1 (52) 4+ i1 (52)] (36)
Ok(s52) + 2ky sin” owy(s2) = ky sin® a[wir (1) + i1 (s1)] (37)
Ok(s3) + 2kswi(s3) = k3wier (s3) + kywii (s3) (38)
Or(s4) + 2kawi(s4) = kawy1 (54) + kawy—1 (s4) (39)

where o represents the angle between the spring and the beam. In Eq. (39), k4 — oo implies the rigid
connection, i.e.

wi(s4) =0, k=1,2,...,n
5.2. Simplification of eigen-value problem and qualitative properties of modes

The modes of the structure shown in Fig. 6 have the following form:
T
w) = {w(lr) Wy wir) } = {sinry sin2ry --- sinmy}q. r=12,...,n (40)

where = n/(n+ 1), and w,i") denotes the displacement of the kth mass.
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Based on the analysis in the preceding section and the idea of mode expansion, we can transfer the
original displacement w into anther set of generalized displacements by a special transformation as follows:

9
wi sinyl --- sinrpl ... sinnyl )
W, 5| sin2yd oo sin2epd oo sin2ayd | |
w— Y 4 ¢ =Cq (41)
: R
Wy sinnpyl -+ sinrnpl .- sinnnyl
9,
where the matrix C has following properties,
c'c=1I (42)
C' (Y + Y"1)C = diag(2cosyI,2cos 2y, . .., 2 cosmyl) (43)

where ¥ and Y"' are the matrices defined in Eq. (21). The result above can be obtained by applying the
identical equation

sin(k — 1)ry + sin(k + 1)ry = 2 cos(ry) sin(kry) (44)

Eqgs. (33) and (34) are rewritten as follows:

L'w—o*Mw=0 inQ (45)

Bw=0 on0R (46)
_ 7 n—1 -

Iowl, =T (Ywl, +Y""wle) j=12,....1 (47)

where L', M', B, J; and J'; (p = 1,2,...,n — 1) are block diagonal matrices of L, M, B, J; and J;, res-
pectively. In these equations wy, w,, ..., w, are coupled with each other.

Substituting the transformation equation (41) into Eqs. (45)—(47), then pre-multiplying with C*, and
using Eqgs. (42) and (43), we may obtain,

Lqg, — o*Mgq, =0 in Q (48)
Bg. =0 on 0Q2 (49)
Jiq,.l, = J;2cos W ls r=12,....n (50)

We draw two conclusions regarding to a chain structure:

(1) The eigen-value problem of the whole structure of a chain structure, as expressed in Egs. (33)-(35), can
be simplified into # eigen-value problems of a single substructure with different constraints, as expressed
in Eqgs. (48)—(50). Therefore, the mode of the whole structure can be obtained according to the follow-
ing relationship,

w, = {w.,wa,.. .,w,,,}T = [sinryl,sin 21yl .. .,sinnrl//I]Tq, r=12,...,n (51)

(2) The modes of a chain structure can be divided into n groups, each of which possesses the properties as
expressed in Eq. (51).
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2k3(1— cos ry)

Fig. 8. The equivalent substructure.

5.3. Application

When we seek to solve the eigen-value problem of a chain structure using numeric method, we only need
to solve n eigen-value problems of a single substructure, as expressed in (48)—(50). The mode of the whole
structure can then be obtained according to expression (51). Therefore, the computational complexity can
be considerably reduced.

If we want to obtain the modes and natural frequencies by experiment, we only need to measure n mode
data ¢, (r = 1,2,...,n) on the first substructure, and g, (s), the value of mode at some point s on the second
substructure, where ¢,(s) are not zero. Then we find out the value of r in the relationship
g.(s) = (sin2ry/ sinrf)q,(s). As a result, the modes of the whole structure, w,, can be obtained by Eq. (51).

5.4. Examples

If the structure in Fig. 7 has only one spring connection on s; and a rigid connection on s,, the con-
straints (50) are

0,(s5) = ~2hs(1 — cos ) (s3)
q,.(S4) =0

Under these constraints, the substructure is equivalent to the following beam as illustrated in Fig. 8.

(52)

6. Axis-symmetric structures
6.1. Model and equation

A structure is termed axi-symmetric, if its geometry, physical properties, and boundary conditions are all
unaltered after rotating it by an arbitrary angle with respect to a straight line—the axis. If this axis is set as
the z-axis in a cylindrical coordinate system—Or0z, the geometry, physical properties and boundary con-
ditions of an axi-symmetric structure are independent of 0.

In a three-dimensional continuous system, the eigen-value equation and boundary conditions of a axi-
symmetric structure are expressed as follows:

(53)
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where €2 represents a three-dimensional domain in the cylindrical coordinate system Or0z. u, v, w denote the
displacements in the direction of r, 0 and z respectively, and L, ., M, y., B,y. denote elastic, inertia and
boundary condition differential operator matrices respectively. By virtue of the axi-symmetry, all the co-
efficients of these operator matrices are independent of 6.

For a two-dimensional problem (e.g. circular plane membrane, plate, and rotational shell), the coor-
dinates are (r, 0) or (6,z). For a one-dimensional problem (e.g. circular ring), the coordinate should only be
0. In addition, in some problems, only the displacement of u and v (in plane membrane problem) or w (in
bending plate problem) appear in Eq. (53).

6.2. Properties of modes

In the following analysis of a axi-symmetric structure, the most complex case, a three-dimensional elastic
body with displacements u, v, and w, is considered. Due to the axi-symmetry, the displacements of the
structure possess the periodicity of 27 with respect to 6, which thus can be expanded into Fourier series of 0
as follows:

u(r,0,z) =) [U,(r,z)cosnb + U (r,z) sinn0]

M 1

v(r,0,z) =y [V,(r,z) cosnd + V/(r,z) sinn0] (54)

Il
=}

w(r,0,z) = Z[Wn(r,z) cosnl + W!(r,z) sin n0]
n=0

L.y.,M,y., B.,. are linear operator matrices and all of their coefficients are independent of 0. Substituting
Eq. (54) into Eq. (53), due to the orthogonality of cosnf, sinnf, the harmonic wave of different orders
is uncoupled. Therefore, the 3-dimensional eigen-value problem (53) can be simplified into a series of 2-
dimensional ones:

L,y.(r,z)[U,cosnl + U, sinnd, V, cosn + V! sin n, W, cos n + W, sin n0]

— 0*M,.(r,2)[U, cos n0 + U, sin n0, ¥, cos n0 + V! sinn, W, cosn0 + W'sinnf] =0 in (55)
B, ¢.(r,z)|U, cosnf + U sinnf, V, cosnd + V, sinn6, W, cosnf + W, sinnf] =0 on 02

In sequence, the modes of the structure have the form:

u(r,0,z) U,(r,z) U'(r,z)
U,=|v(r0,z) | = | Vi(r,z) | cosn0+ | V/(r,z) | sinn0 n=0,1,2,... (56)
wir,0,2)] | Wr2) W (r,2)

It should be noted that the structure is also symmetric with respect to any plane that contains the axis. If
we use another cylindrical coordinates system Or'0'z', where only the direction of ¢’ is converse with that in
the original coordinates, and others are kept unaltered, the eigen-value problem expressed in the new
coordinate system is

Ly,y.(r2)u(, 0.2),0(,0,2),wW({F,0,2)] - sz/r,H,z
in 2
B;,’o/yz,(r’,z’)[u/(r’, 0,2),0(#,0,2),wW(#,0,2))=0 on 02

(¥, (7, 0,2),0(,0,2),W({F,0,2)] =0

(57)

where «', ', and w' represent the displacements and are the functions of ¥, /, and z. They have following
relationship with u, v, w,
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u'(7,0,2) = u(r,—0,2)
V(X 0,2) = —v(r,—0,z2) (58)

W,(x,7 9/’21) = W(}", 7972)

Because of the symmetric property mentioned above, the following relationships are satisfied,

L'=L M=M, B=B8B (59)
Egs. (58) and (59) indicate that
u(r, _972) Un(rv Z) Ur/:(ra Z)
U =|—-vr,—0,z) | = | —V.r,z) | cosnd — | =V/(r,z) | sinn0 (60)
w(r,—0,z W,(r,z) W!(r,z)

is also the eigen-vector of eigen-value problem (53), which is associated with the same eigen-value as eigen-
vector expressed in (56) is.
Therefore, the linear combinations of U, and U,

[ U,(r,z) cosn0]
(U, + U] = | V!(r,z)sinn0 (61)
| W, (r,z) cosn0 |

Uns =

N —

[ U/ (r,z)sinn0 |
U =5[U, = U;) = | (r,2) cosn (62)
| W, (r,z) sinn0 |

—

are the modes corresponding to the same frequency. Egs. (61) and (62) represent symmetric mode and anti-
symmetric mode, respectively.

Moreover, because of the axi-symmetric nature of the structure, if we rotate the mode expressed in (61)
by n/2n, we obtain

U,(r,z)sinnf
U,=|-V/(rz)cosn0 (63)
W,(r,z) sinnl

Concerning an axi-symmetric structure, we come to two conclusions:
First, the modes of an axi-symmetric elastic body have the property of a harmonic wave in direction of 6.
For each wave number n (n =0,1,2,...), there are two groups of modes, symmetric modes and anti-
symmetric modes, as expressed in Egs. (61) and (63) respectively, both of which correspond to the same
frequencies. Moreover, the anti-symmetric mode with wave number n can be obtained by rotating the
symmetric mode by 7/2n.
Second, substituting Eq. (61) into Eq. (53) yields the governing equation of U,, ¥/, and W, with para-
meter n:
L,.,[U,(r,z),V!(r,2), Wy(r,2)] — @*M,_,[U,(r,2), V(r,2), Wo(r,z)] =0 in Q

n

B, ., [U.(r,2),V(r,z), W,(r,z)] =0 ond2 n=1,2,...

n

(64)

Thus, infinite number of eigen-value problems of two dimensions replaces the eigen-value problem of three
dimensions.

For two-dimensional axi-symmetric structures such as a rotational shell and a circular plate, and one-
dimensional axi-symmetric structure like a circular ring, their modes possess the special forms of Egs. (61)
and (63).
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6.3. Application

In practice, we only need to acquire a limited number of modes of an axi-symmetric structure. Therefore,
when we seek to solve the eigen-value problem of an axi-symmetric structure using numeric method, we can
simplify Eq. (53) with a limited number of eigen-value problems as expressed in Eq. (64). The dimensions of
the problem can thus be reduced by one, and the number of DOF required for solving a discrete problem
will be considerably decreased.

If we want to obtain the modes and natural frequencies of an axi-symmetric by experiment, we only need
to measure the data on a contour to the detected wave number, and the data on a certain plane containing
the axis of a three-dimensional body (or on a generatrix of a two-dimensional structure, or on a point of
one-dimensional structure). Then by applying the properties of the mode as expressed in Egs. (61) and (63),
we can know the modes of the whole structure.

7. Forced vibration problem for repetitive structures

For forced vibration problems of repetitive structures, the force vector can be transformed using the
same method as applied to the generalized displacements mentioned in the previous sections. Therefore, the
forced vibration problem of the whole structure is simplified into a group of uncoupled forced vibration
problems of a single substructure.

For example, for a symmetric structure, its forced vibration equation is

Lw,+Mw,=F;, inQ i=1,2 (65)
If the given force vector is transferred as follows:
F, 1{1 1]{f1} 1{1] 1{1]
F = =Sf =— S 4+ — 66
Then in inverse,
Aol )
= =S'F=— 67
s {fz V2T 1] F; (67)
Substituting Egs. (7) and (66) into Eq. (65) yields
Lg+Mg,=f, mQ i=1,2 (68)

Similar method can be used in other kinds of repetitive structures.

8. Conclusions

In this paper, we discussed the free and forced vibrations of symmetric structures, cyclic periodic
structures, linear periodic structures, chain structures, and axi-symmetric structures. The properties of
modes for continuous models of repetitive structures are obtained by applying a series of transformation to
the displacement function fields of these models. Compared to the research for discrete systems, the present
discussion for continuous systems has more significance in theory.

According to these reduction approaches, the problem of calculating the natural and forced vibrations of
the whole structure is simplified by calculating a group of relevant problems on a single substructure.
Moreover, taking advantage of the specific properties of the modes, the vibration experiment can be



5494 D. Wang et al. | International Journal of Solids and Structures 40 (2003) 5477-5494

simplified as well, which measurement only need to be performed on one substructure and on one point of
an adjacent substructure. The effort of calculation and measurement is thus considerably reduced.

Utilizing the criterion that the data violating the qualitative properties are sure to be incorrect, the
qualitative properties of the modes can be used to exam the correctness of the mode data obtained from
calculation and experiment and the reasonableness of the design data given in inverse problem in vibration.
In addition, they can be used to identify the reasonableness of the discrete models of the structures. For
instance, the qualitative properties of modes for discrete models of symmetric, cyclic periodic, and chain
structures, as derived by Chan et al. (1998) and Wang and Wang (2000) are the same as those for con-
tinuous models, if: (1) the displacement function fields, w, w,, ¢, ¢,, in Eqs. (7), (15) and (41), of both the
whole structure and the substructures of a continuous model are replaced respectively with the generalized
displacement vectors of discrete models, and (2) the dimensions of unit matrices I in these same equations
are set respectively as the dimensions of generalized displacement vectors of substructures of corresponding
discrete model. These facts show that the discrete models of these considered repetitive structures are
reasonable in terms of their qualitative properties.
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