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Abstract

In this paper, the vibration problems of some repetitive structures, including symmetric, cyclic periodic, linear pe-

riodic, chain, and axi-symmetric structures is investigated. Eigen-value problems derived from the vibration equations

of these structures are established based on their continuous models. The special properties of the structural modes of

these structures are deduced. Applying these properties can provide effective reduction approach to solving the natural

and forced vibration problems of these structures by either numerical or experimental methods. Furthermore, these

properties can be applied in other aspects such as evaluating the reasonableness of the discrete models of these repetitive

structures.
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1. Introduction

Repetitive structures are very common both in engineering and in natural world. A structure can be
defined as repetitive when it is assembled in a proper way by a group of identical substructures. These

substructures are identical in terms of geometric shape, physical properties, boundary conditions, and

connections with other substructures.

Generally, the modes and natural frequencies of a structure are determined by the nature of the whole

structure. However, for a repetitive structure, by virtue of its special repetitive property, the modes and

natural frequencies of the whole structure can be determined from those of its single substructure. Thus,

effort of calculating or measuring the free and forced vibration of these kinds of structures can be con-

siderably reduced. Up to now, many papers have been discussing the dynamic properties of the repetitive
structures: Evensen (1976) studied the vibration of symmetric structures; Thomas (1979) presented some

results concerning the vibration of cyclic periodic structures; A series of work was done on analyzing the

vibration of periodic structures using the U-transformation method (Cai and Wu, 1983; Cai et al., 1990;
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Chan et al., 1998); Hu and Chen (1988) analyzed the vibration of cyclic periodic structures using CN group

method; Zhong (1991) gave several approaches for solving the eigen-value problems of linear periodic

structures; Wang and Wang (2000) provided some simplification methods for solving the discrete eigen-

value problems of specific kinds of repetitive structures. Results of these researches have been widely used in
the design of many kinds of FEM software.

Some other researchers, including Brillouin (1946) and Mead (1973, 1975a,b) and Mead and Bansal

(1978) have studied the wave propagations in linear periodic systems. Mead has done lots of work on the

approximate solution of the propagating wave of linear periodic systems, using the ‘‘propagation con-

stant’’. Since only the exact solution of standing waves are concerned in the present paper, the propagating

wave motion is not discussed.

It is necessary to extend the existing research results of discrete models of repetitive structures to con-

tinuous models. In most current literatures concerning the vibration problems of repetitive structures, for
the sake of simplifying calculation, discrete models of structures are studied and eigen-value problems of

matrices with repetitive properties are solved. In this paper, continuous models of repetitive structures are

studied. Although analyzing eigen-value problems of differential equations may be more difficult in

mathematics, results of continuous models are more fundamental in nature. The derived qualitative

properties of the structural modes (and frequencies) are of great importance in physics. They can be used to

simplify the numerical calculation and the experiments of natural and forced vibration problems. In ad-

dition, they can be used to evaluate the correctness of the data obtained in the numerical calculation and

the experiments of vibration problems, and to identify the reasonableness of discrete models of repetitive
structures.

In this paper, the unique qualitative properties of natural and forced vibration of some repetitive

structures, including symmetric, cyclic periodic, linear periodic, chain and axi-symmetric structures,

are investigated. Each structure is analyzed in three steps: (1) Eigen-value problem of its differential

vibration equation is established based on the continuous model of the structure; (2) The qualitative

properties of its modes are deduced using the specific transformation on its displacement function field; (3)

Application of the derived properties to simplifying the calculation and the experiment of natural and

forced vibration problems is discussed, and some examples of application to the real structures are pre-
sented.
2. Symmetric structures

2.1. Model and equation

A structure is defined as mirror-symmetric or symmetric for short, if its geometric shape, physical
properties as well as boundary conditions are all symmetric with respect to a plane (or a strait line) that is

called as a symmetric plane (or a symmetric line).

An example of a symmetric structure is illustrated in Fig. 1. Plane x ¼ 0 in a Cartesian coordinate system

is the symmetric plane. It divides the whole structure into two substructures, no. 1 and no. 2, both of which

are identical in shape, physical properties, and boundary conditions. Two Cartesian coordinate systems are

set respectively in substructures no. 1 and no. 2, the directions of their y and z axes are the same, while those

of their x axes are opposite to each other. The generalized displacement vectors of the two substructures are

denoted by w1 and w2 respectively, and the generalized displacement vector of the whole structure is
w ¼ ðw1;w2ÞT

.

The eigen-value equation and boundary conditions are expressed as follows,
Lwi � x2Mwi ¼ 0 in X i ¼ 1; 2 ð1Þ
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Fig. 1. A symmetric structure.
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Bwi ¼ 0 on oX i ¼ 1; 2 ð2Þ

where L, M, and B are elastic, mass, and boundary differential operators or differential operator matrices

respectively. X is the region of a substructure and oX is its boundary excluding the common boundary

where x is equal to 0.

It should be noted that on the common boundary of substructure no. 1 and no. 2, their generalized
displacements and generalized internal forces satisfy the continuous conditions, which are expressed in

terms of differential equations as follows,
J1w1 ¼ �J1w2 on x ¼ 0 ð3Þ

J2w1 ¼ J2w2 on x ¼ 0 ð4Þ

As shown in Fig. 1, the lower part of the structure is a three-dimensional elastic body and the upper part

is composed of two rectangular plates. On their common boundary (plane x ¼ 0) in the elastic body, the

continuous conditions of the displacements and stresses of substructure no. 1 and no. 2 are
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The elastic and rigid constraints between substructure no. 1 and no. 2, if exist, are written as follows:
J rjw1jsj ¼ J rjw2jsj j ¼ 1; 2; . . . ; l ð5Þ

J rjw2jsj ¼ J rjw1jsj j ¼ 1; 2; . . . ; l ð6Þ
For example, for the structure shown in Fig. 1, there are three springs and one rigid rod connecting the two

plates, which means l ¼ 4 and Eq. (5) is written as
Q1ðs1Þ þ k1 sin2 au1ðs1Þ ¼ �k1 sin2 au2ðs2Þ

Q1ðs2Þ þ k1 sin2 au1ðs2Þ ¼ �k1 sin2 au2ðs1Þ
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Q1ðs3Þ þ k3u1ðs3Þ ¼ �k3u2ðs3Þ

u1ðs4Þ ¼ �u2ðs4Þ
where, Q1ðsiÞ corresponds to the spring forces acting at point si on the plates of substructures no. 1, and a
represents the angle between the spring and the plate. Eq. (6) can be expressed in a similar way. Due to the

continuous conditions and the constraints, w1 and w2 are coupled. The vibration equations for the whole

structure are expressed in Eqs. (1)–(6).

2.2. Simplification of eigen-value problem and qualitative properties of modes

The original displacements fw1;w2g can be transferred into another set of generalized displacements

fq1; q2g as follows:
w ¼ w1

w2

� �
¼ Sq ¼ 1ffiffiffi

2
p I I

I �I

� �
q1

q2

� �
¼ 1ffiffiffi

2
p I

I

� �
q1 þ

1ffiffiffi
2

p I
�I

� �
q2 ð7Þ
where I is a unit matrix with the same dimensions of the displacement function field w1, the first and the

second terms on the right side of the last equal-sign correspond to symmetric and anti-symmetric modes

respectively. The transformation matrix is an orthogonal one, which means
STS ¼ I ð8Þ
In Eq. (8), I is a unit matrix whose dimension is double of that of w1. Rewrite the Eqs. (1)–(6) as follows:
L 0
0 L

� �
w1

w2

� �
� x2 M 0

0 M

� �
w1

w2

� �
¼ 0 in X0 ð9aÞ

B 0

0 B

� �
w1

w2

� �
¼ 0 on oX0 ð9bÞ

J1 J1

J2 �J2

� �
w1

w2

� �
¼ 0 on x ¼ 0 ð9cÞ

J rj 0

0 J rj

� �
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� �����
sj

¼ J rj 0

0 J rj

� �
0 I
I 0

� �
w1

w2

� ������
sj

i ¼ 1; 2; . . . ; p ð9dÞ
where X0 and oX0 are the region and the boundary of the whole structure. Substituting Eq. (7) into Eqs. (9),
then pre-multiplying (9a), (9b) and (9d) with ST, the uncoupled equations of q1 and q2 are derived as

follows:
Lqi � x2Mqi ¼ 0 in X

Bqi ¼ 0 on oX

J iqi ¼ 0 on x ¼ 0 i ¼ 1; 2

J rjqijsj ¼ �J rjqijsj ðþ if i ¼ 1;� if i ¼ 2Þ j ¼ 1; 2; . . . ; l

ð10Þ
We have two conclusions regarding to the symmetric structure: (1) The eigen-value problem of the whole

structure expressed in Eqs. (9) can be simplified into two eigen-value problems of a single substructure
expressed in Eqs. (10). Eq. (7) indicates that the solution of Eqs. (10) is the symmetric mode of the whole

structure for i ¼ 1, and it is the anti-symmetric mode for i ¼ 2; (2) The mode of a symmetric structure is
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Fig. 2. Reduction of rhombus beam (a) original symmetric rhombus beam, (b) equivalent substructure for symmetric mode and

(c) equivalent substructure for anti-symmetric mode.
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either symmetric, or anti-symmetric, or the linear combination of a symmetric mode and an anti-symmetric

mode with the same natural frequency.
2.3. Application

(1) When calculating the modes and natural frequencies of a symmetric structure, we only need to do

calculation of one half of the structure. First, proper constraints and boundary conditions, representing

symmetric or anti-symmetric deformation of the whole structure, need to be given on the symmetric plane.

Then two eigen-value problems of one of the substructures are solved separately. The obtained frequencies

of one substructure are exactly those of the whole structure. The modes of the whole structure can be

obtained by expanding symmetrically or anti-symmetrically the obtained modes of one substructure. The

advantage of this method is that the DOF required for the computation may be reduced by one half.

If we want to obtain the modes and natural frequencies of a symmetric structure by experiment, we only
need to do measurement on one half of the whole structure and at one point on the other half. The modes

of the whole structure can be expanded from the modes of its one substructure, either symmetrically or anti-

symmetrically, according to whether the obtained data at two symmetric points on the structure are

symmetric or anti-symmetric. However, if the data at two symmetric points indicates that the mode is

neither symmetric nor anti-symmetric, we can claim that it implies a repeated frequency. We may get the

symmetric and the anti-symmetric mode corresponding to the same frequency by making some adjustment

in the experiment.
2.4. Examples

The Rhombus beam shown in Fig. 2 has a free–free boundary condition. It can be simplified as a sliding-

free beam or a pinned-free beam, both of which have analytic solutions (Kirchhoff, 1879) for their eigen-

value equations.
3. Cyclic periodic structures

3.1. Model and equation

A structure can be termed cyclic periodic if it is in form of an assembly of identical substructures that are

distributed evenly on a circular ring. Once the geometric shape, physical properties, boundary conditions
and its mutual connections with other substructures of one substructure are defined, those of the remainder



Fig. 3. A cyclic periodic structure.
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of the whole structure can been obtained by rotating the structure repeatedly by angle w ¼ 2p=n, where n
represents the number of substructures. An example of a cyclic periodic structure is illustrated in Fig. 3.

Denote the kth substructure of a cyclic periodic structure by X, two common boundaries connecting kth

substructure with the (k � 1)th and the (k þ 1)th substructure respectively by b�k and bþk , and other

boundaries by oX. The eigen-value problem of the differential equation for the whole structure is as follows:
Lwk � x2Mwk ¼ 0 k ¼ 1; 2; . . . ; n in X ð11Þ

Bwk ¼ 0 k ¼ 1; 2; . . . ; n on oX ð12Þ
where wk represents the mode on the kth substructure in terms of function or function vector. L, M and B
represent the elastic, mass and boundary conditions operators or operator matrices of a substructure.

If common boundaries exist between two adjacent substructures, generalized displacements and gene-
ralized internal forces on the common boundary are continuous,
J0wkjbþk ¼ J0wkþ1jb�
kþ1

k ¼ 1; 2; . . . ; n ð13Þ
where wnþ1 � w1, b�nþ1 is b�1 , J0 represents a differential operator or differential operator matrix.

If the elastic and rigid constraints between two substructures exist, they are expressed as follows:
Jpjwkjspj ¼ Jpjwkþpjspj k ¼ 1; 2; . . . ; n p ¼ 1; 2; . . . ; n� 1 j ¼ 1; 2; . . . ; lp ð14Þ
where Jpj (p ¼ 1; 2; . . . ; n� 1) denotes a differential operator or differential operator vector. The subscript
of wkþp is set as i if it reaches to nþ i. The pth equation indicates the constraints between the region spj (a

point or a region of one to three dimensions) in the kth substructure and the region spj in the (k þ p)th

substructure. When no constraint exists between the kth substructure and some other substructures, the

corresponding equations in (14) will not appear.

For example, for a structure shown in Fig. 3, a spring is linking the point s1 in the kth substructure with

the point s1 in the (k þ 1)th substructure. Therefore, the first equation of (14) indicates a spring force acting

at s1 induced by relative displacement of point s1 to s1. The point s2 in the kth substructure is rigidly

connected with the point s2 in the (k þ 2)th substructure, which in the second equation of (14) the dis-
placements of point s2 and those of point s2 should be equal. This example illustrates the case when p ¼ 1; 2,

l1 ¼ l2 ¼ 1.
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Due to the continuous conditions (13) and the constraints (14) between two substructures, wk

(k ¼ 1; 2; . . . ; n) are coupled with each other, we need to solve the coupled equations of w1 to wk if we try to

calculate the natural frequencies and modes of the whole structure using Eqs. (11)–(14) directly.

3.2. Simplification of eigen-value problem and qualitative properties of modes

The original displacement w can be transferred into another set of generalized displacements as follows:
w ¼ fw1;w2; . . . ;wngT ¼ R1 R2 
 
 
 Rn½ � q1 q2 
 
 
 qnf gT ¼ Rq;

Rr ¼
1ffiffiffi
n

p ½I ; eirwI ; . . . ; eirðn�1ÞwI �T ð15Þ
where matrix R is a U matrix, i.e.,
R
T
R ¼ I ð16Þ
The eigen-value equation of the whole structure, Eqs. (11)–(14), are rewritten as follows,
L0w� x2M 0w ¼ 0 in X0 ð17Þ

B0w ¼ 0 on oX0 ð18Þ

J 0
0wjbþ ¼ J 0

0Ywjb� ð19Þ

J 0
pjwjspj ¼ J 0

pjY
pwjspj p ¼ 1; 2; . . . ; n� 1 j ¼ 1; 2; . . . ; lp ð20Þ
where X0 and oX0 are the region and the boundary of the whole structure, L0, M 0, B0, J 0
0, and J 0

pj, J
0
pj

ðp ¼ 1; 2; . . . ; n� 1) represent the block diagonal matrices of L, M , B, J0, and Jpj, Jpj respectively.
Moreover,
Y ¼

0 I

0 I
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� �
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0 I
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2
6666666664
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7777777775

Yp ¼

0 � 0 I 0 � 0

0 � 0 0 I � 0

� � � � � � �
0 0 0 � � � I

I 0 0 � � � 0

� � � � � � �
0 � I 0 0 � 0

2
6666666664

3
7777777775

pþ1

p

ð21Þ
where Yp is termed row-switch transform matrix and
R
T
YpR ¼ diagð eipwI ei2pwI 
 
 
 einpwIÞ ð22Þ
Substituting Eq. (15) into Eqs. (17)–(20), then pre-multiplying with R
T
, and applying Eq. (16) and (22), we

may obtain
Lqr � x2Mqr ¼ 0 in X

Bqr ¼ 0 on oX

J0qrjbþ ¼ J0 eirwqrjb�

Jpjqrjspj ¼ Jpj e
iprwqrjspj r ¼ 1; 2; . . . ; n p ¼ 1; 2; . . . ; n� 1; j ¼ 1; 2; . . . ; lp

ð23Þ
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In Eqs. (23), qr ¼ qrr þ iqir (r ¼ 1; 2; . . . ; n) are uncoupled. It can be verified that the complex solution of Eqs.

(23) corresponding to r ¼ n� s is conjugated with that corresponding to r ¼ s.
As to a cyclic periodic structure, we come to two conclusions: First, for a cyclic periodic structure, the

eigen-value problem of the whole structure expressed in Eqs. (17)–(20) can be simplified into n eigen-value
problems of one single substructure expressed in Eq. (23). By utilizing Eq. (15), the mode of the whole

structure can be obtained from wðrÞ ¼ uðrÞ þ ivðrÞ.
uðrÞ

vðrÞ

� �
¼

ur1
ur2

..

.

urn
vr1
vr2

..

.

vrn

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

I 0

cos rwI � sin rwI

..

. ..
.

cos rðn� 1ÞwI � sin rðn� 1ÞwI
0 I

sin rwI cos rwI

..

. ..
.

sinðn� 1ÞrwI cosðn� 1ÞrwI

2
66666666666664

3
77777777777775

qrr
qir

� �
r ¼ 1; 2; . . . ; n ð24Þ
Second, the modes of a cyclic periodic structure can be divided into n groups expressed as (24). For each

group of modes, a specific phase lag exists between two adjacent substructures,
w
ðrÞ
kþ1 ¼ eirww

ðrÞ
k ð25Þ
These modes can be further categorized into three following classes,

(1) The displacements of every substructure are identical, which indicates that in Eq. (24), r ¼ n, i.e.
wðnÞ ¼ fqn; qn; . . . ; qng
T ð26Þ
If n is even, in Eq. (24) r ¼ n=2, and the displacements of two adjacent substructures are opposite, i.e.
wðn=2Þ ¼ fqn=2;�qn=2; . . . ;�qn=2g
T ð27Þ
In any other case when r 6¼ n, n=2 (even n), there exist two modes associated with one repeated frequency
u
ðrÞ
1 ; u

ðrÞ
2 ; . . . ; uðrÞn and v

ðrÞ
1 ; v

ðrÞ
2 ; . . . ; vðrÞn r ¼ 1; 2; . . . ;

n� 2

2
ðeven nÞ or

n� 1

2
ðodd nÞ
and the relationship between them is
u
ðrÞ
kþ1 ¼ cos rwuðrÞk � sin rwvðrÞk

v
ðrÞ
kþ1 ¼ sin rwuðrÞk þ cos rwvðrÞk

ð28Þ
3.3. Application

The process of calculating the frequencies and modes of a cyclic periodic structure can be divided into

two steps. First, the real eigen-value equations of coupled qrr and qir are solved as follows,
Lqrr � x2Mqrr ¼ 0 Lqir � x2Mqir ¼ 0 in X ð29Þ

Bqrr ¼ 0 Bqir ¼ 0 on oX ð30Þ

J0q
r
rjbþ ¼ J0ðcos rwqrr � sin rwqirÞjb�

J0q
i
rjbþ ¼ J0ðsin rwqrr þ cos rwqirÞjb�

ð31Þ
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Jpjq
r
rjspj ¼ Jpjðcos rpwqrr � sin rpwqirÞjspj

Jpjq
i
rjspj ¼ Jpjðsin rpwqrr þ cos rpwqirÞjspj

p ¼ 1; 2; . . . ; n� 1 j ¼ 1; 2; . . . ; lp; r ¼ 1; 2; . . . ;
n� 2

2
ðif n is evenÞ or

n� 1

2
ðif n is oddÞ

ð32Þ
Second, according to Eq. (24), the modes of the whole structure can be derived from qrr and qir. It should be

noted that when r ¼ n or r ¼ n=2 (if n is even), equation (23) and its solution are real. Therefore, we only
need to solve the eigen-value equations of qrn and qrn=2 on a single substructure.

(1) If we suppose that each substructure of a discrete cyclic periodic system has m DOF, the eigen-value

problem of the whole structure expressed in Eqs. (11)–(14) will have n� m DOF. However, for the un-

coupled eigen-value problem expressed in Eqs. (29)–(32), we only need to solve ðn� 2Þ=2 (if n is even)

or ðn� 1Þ=2 (if n is odd) eigen-value problems with 2 � m DOF and two (n is even) or one (n is odd)

eigen-value problem with m DOF. Therefore, the computational complexity is considerably reduced.

(2) If we want to obtain the modes and natural frequencies of a cyclic periodic system by experiment, we
can follow two steps: (1) Measure only the mode q on a single substructure. (2) Select a point s on this

substructure where qðsÞ is not equal to zero and measure qðsÞ at the same point on its adjacent substruc-

ture. If the two qðsÞ are identical, it indicates that the mode of the whole structure is in the form of

wðnÞ ¼ ½ I I 
 
 
 I �Tq. If the two qðsÞ are opposite, the mode of the whole structure is in the form

of wðn=2Þ ¼ ½ I �I 
 
 
 �I �Tq. If two modes, q1 and q2, on a single substructure are detected to be

associated with a same natural frequency and at a same point s of two adjacent substructures, the fol-

lowing relations exist,
q1;kþ1ðsÞ ¼ cos rwq1;kðsÞ � sin rwq2;kðsÞ

q2;kþ1ðsÞ ¼ sin rwq1;kðsÞ þ cos rwq2;kðsÞ

and thus modes ur and vr represented by exp.(24) are two modes with repeated frequencies.

3.4. Examples

As shown in Fig. 4, the plane frame is composed of four uniform beams rigidly connected with each
other. The length of each beam is l and the four connection corners are pinned supported. Two kinds of
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Fig. 4. A plane frame assembled by four beams.



5486 D. Wang et al. / International Journal of Solids and Structures 40 (2003) 5477–5494
constraints exist in this structure: (1) The transverse displacement of the point s1 on the kth beam should be

identical with that of the point s1 on the (k þ 1)th beam; (2) A spring, with the spring constant k, connects

the middle point of the kth beam with that of the (k þ 2)th beam. The transverse displacement of the beam

is denoted by w, while w0 represents its differential term with respect to the coordinate parallel to the axis of
the beam.

The continuous conditions and constraints are expressed as following:
M

wkðlÞ ¼ wkþ1ð0Þ ¼ 0

w0
kðlÞ ¼ w0

kþ1ð0Þ w00
kðlÞ ¼ w00

kþ1ð0Þ

wkðs1Þ ¼ wkþ1ðs1Þ

Qk
l
2

� �
þ Kwk

l
2

� �
¼ �Kwkþ2

l
2

� �
The modes and frequencies of this structure can be divided into three groups:

(1) When r ¼ 4, q4 denotes the mode of the beam shown in Fig. 5(a).
q04ð0Þ ¼ q04ðlÞ; q004ð0Þ ¼ q004ðlÞ

q4ðs1Þ ¼ q4ðs1Þ

Q4

l
2

� �
¼ �2Kq4

l
2

� �

The mode of the whole structure is
 

w ¼ 1 1 1 1f gTq4ðxÞ

(2) When r ¼ 2, q2 denotes the mode of the beam shown in Fig. 5(b).
q02ð0Þ ¼ �q02ðlÞ; q002ð0Þ ¼ �q002ðlÞ

q2ðs1Þ ¼ �q2ðs1Þ; Q
l
2

� �
¼ �2kq2

l
2

� �
The mode of the whole structure is
w ¼ f 1 �1 1 �1 gTq2ðxÞ

(3) When r ¼ 1, q1 denotes to the mode of the beam shown in Fig. 5(c).
q01ðlÞ ¼ iq01ð0Þ; q001ðlÞ ¼ iq001ð0Þ
k2

0 2
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Fig. 5. Equivalent structures.
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q1ðs1Þ ¼ iq1ðs1Þ
The mode of the whole structure is
w ¼ f 1 i �1 �i gTq1ðxÞ

This problem is a complex eigen-vector problem associated with real eigen-values. It can also be ex-

pressed as real eigen-vector problems with real and imaginary parts coupled with each other.
4. Linear periodic structures

A linear periodic structure is composed of an assembly of identical substructures distributed evenly on a

straight line (or a circular arc). All the substructure are identical in terms of the geometric shape, physical
properties, boundary conditions and the constraints with other substructures, expect for the two sub-

structures at the ends that can have peculiar boundary conditions.

For some special kinds of linear periodic structures, their eigen-value problems can be solved by utilizing

the method for cyclic periodic structures. The calculation process is divided into two steps: (1) Extend the

original structure by one or two times; (2) Generate a cyclic periodic structure by joining the two ends of the

extended structure. The structure suitable for this method should satisfy two following pre-requisites:

All of its substructure should be symmetric, which means its geometric shape, physical properties,

boundary conditions, and constraints with other substructures are all symmetric. Therefore, the newly
generated cyclic periodic structure is also symmetric.

At the two ends of the original linear structure, the boundary conditions should conform to the sym-

metric or anti-symmetric modes restrictions on the corresponding symmetric planes of the newly generated

cyclic periodic structure.
5. Chain structures

5.1. Model and equation

A chain structure is a special type of a linear periodic structure. A structure is called a chain structure
when it is in the form of an assembly of identical substructures distributed evenly on a straight line (or a

circular arc), and satisfies the following three restrictions: (1) Between any of the two substructures, there is

no common boundary but elastic or rigid constraints without mass; (2) The constraints between one

substructure and its preceding one should be identical to that between it and its following one; (3) The two

ends of the structure should be fixed. These three restrictions make the chain structure unique compared

with ordinary linear periodic structures. The spring–mass system illustrated in Fig. 6 is a typical example of

a chain structure.

Another example of a chain structure is illustrated in Fig. 7. For each substructure, a spring connects the
point s1 on it with the points s2 on its neighbors, another spring links the point s2 on it with the points s1 on
k k k

m

u

m
L

m

Fig. 6. Spring–mass system.



1
k

1
k

3
k

1
s

2
s

3
s

4s

1
k

1
k

3
k

1
s

2
s

3
s

4s

1
k

1
k

3
k

1
s

2
s

3
s

4s

1
k

1
k

3
k

k
w

Fig. 7. Another chain structure.
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its neighbors, the third spring connects point s3 with the same point on its neighbors, and point s4 is rigidly

connected with the same point on its neighbors.
As a special kind of linear structure, the eigen-value equation of a chain structure can be solved by the

general method mentioned in the preceding section for linear structures. However, by virtue of its distin-

guished feature, a more simple approach can be used.

If a chain structure is composed of n substructures, its eigen-value problem of differential equation is as

follows:
Lwk � x2Mwk ¼ 0 in X ð33Þ

Bwk ¼ 0 on oX ð34Þ

J jwkjsj ¼ J jwkþ1jsj þ J jwk�1jsj k ¼ 1; 2; . . . ; n j ¼ 1; 2; . . . ; l ð35Þ
where wk denotes the generalized displacement vector of the kth substructure and w0 � wnþ1 ¼ 0. Eq. (35)

represents the connections between two adjacent substructures. Considering the structure shown in Fig. 7,

Eq. (35) is re-expressed as follows:
Qkðs1Þ þ 2k1 sin2 awkðs1Þ ¼ k1 sin2 a½wkþ1ðs2Þ þ wk�1ðs2Þ� ð36Þ

Qkðs2Þ þ 2k1 sin2 awkðs2Þ ¼ k1 sin2 a½wkþ1ðs1Þ þ wk�1ðs1Þ� ð37Þ

Qkðs3Þ þ 2k3wkðs3Þ ¼ k3wkþ1ðs3Þ þ k1wk�1ðs3Þ ð38Þ

Qkðs4Þ þ 2k4wkðs4Þ ¼ k4wkþ1ðs4Þ þ k4wk�1ðs4Þ ð39Þ

where a represents the angle between the spring and the beam. In Eq. (39), k4 ! 1 implies the rigid

connection, i.e.
wkðs4Þ ¼ 0; k ¼ 1; 2; . . . ; n
5.2. Simplification of eigen-value problem and qualitative properties of modes

The modes of the structure shown in Fig. 6 have the following form:
wðrÞ ¼ wðrÞ
1 wðrÞ

2 
 
 
 wðrÞ
n

n oT

¼ sin rw sin 2rw 
 
 
 sin nrwf gTqr r ¼ 1; 2; . . . ; n ð40Þ
where w ¼ p=ðnþ 1Þ, and w
ðrÞ
k denotes the displacement of the kth mass.
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Based on the analysis in the preceding section and the idea of mode expansion, we can transfer the

original displacement w into anther set of generalized displacements by a special transformation as follows:
w ¼

w1

w2

..

.

wn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼
ffiffiffiffiffiffiffiffiffiffiffi

2

nþ 1

r sin wI 
 
 
 sin rwI 
 
 
 sin nwI

sin 2wI 
 
 
 sin 2rwI 
 
 
 sin 2nwI

..

. ..
. ..

. ..
. ..

.

sin nwI 
 
 
 sin rnwI 
 
 
 sin nnwI

2
666664

3
777775

q1

..

.

qr

..

.

qn

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ Cq ð41Þ
where the matrix C has following properties,
CTC ¼ I ð42Þ

CTðY þ Yn�1ÞC ¼ diagð2 cos wI ; 2 cos 2wI ; . . . ; 2 cos nwIÞ ð43Þ
where Y and Yn�1 are the matrices defined in Eq. (21). The result above can be obtained by applying the

identical equation
sinðk � 1Þrw þ sinðk þ 1Þrw ¼ 2 cosðrwÞ sinðkrwÞ ð44Þ
Eqs. (33) and (34) are rewritten as follows:
L0w� x2M 0w ¼ 0 in X ð45Þ

B0w ¼ 0 on oX ð46Þ

J 0
jwjsj ¼ J 0

jðYwjsj þ Yn�1wjsjÞ j ¼ 1; 2; . . . ; l ð47Þ
where L0, M 0, B0, J j and J 0
j (p ¼ 1; 2; . . . ; n� 1) are block diagonal matrices of L, M, B, J j and J j, res-

pectively. In these equations w1;w2; . . . ;wn are coupled with each other.

Substituting the transformation equation (41) into Eqs. (45)–(47), then pre-multiplying with CT, and
using Eqs. (42) and (43), we may obtain,
Lqr � x2Mqr ¼ 0 in X ð48Þ

Bqr ¼ 0 on oX ð49Þ

J jqrjsj ¼ J j2 cos rwqrjsj r ¼ 1; 2; . . . ; n ð50Þ
We draw two conclusions regarding to a chain structure:

(1) The eigen-value problem of the whole structure of a chain structure, as expressed in Eqs. (33)–(35), can

be simplified into n eigen-value problems of a single substructure with different constraints, as expressed

in Eqs. (48)–(50). Therefore, the mode of the whole structure can be obtained according to the follow-
ing relationship,
wr ¼ fwr1;wr2; . . . ;wrngT ¼ ½sin rwI ; sin 2rwI ; . . . ; sin nrwI �Tqr r ¼ 1; 2; . . . ; n ð51Þ

(2) The modes of a chain structure can be divided into n groups, each of which possesses the properties as

expressed in Eq. (51).
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Fig. 8. The equivalent substructure.
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5.3. Application

When we seek to solve the eigen-value problem of a chain structure using numeric method, we only need

to solve n eigen-value problems of a single substructure, as expressed in (48)–(50). The mode of the whole

structure can then be obtained according to expression (51). Therefore, the computational complexity can

be considerably reduced.

If we want to obtain the modes and natural frequencies by experiment, we only need to measure n mode

data qr (r ¼ 1; 2; . . . ; n) on the first substructure, and qrðsÞ, the value of mode at some point s on the second
substructure, where qrðsÞ are not zero. Then we find out the value of r in the relationship

qrðsÞ ¼ ðsin 2rw= sin rwÞqrðsÞ. As a result, the modes of the whole structure, wr, can be obtained by Eq. (51).

5.4. Examples

If the structure in Fig. 7 has only one spring connection on s3 and a rigid connection on s4, the con-

straints (50) are
Qrðs3Þ ¼ �2k3ð1 � cos rwÞqrðs3Þ
qrðs4Þ ¼ 0

ð52Þ
Under these constraints, the substructure is equivalent to the following beam as illustrated in Fig. 8.
6. Axis-symmetric structures

6.1. Model and equation

A structure is termed axi-symmetric, if its geometry, physical properties, and boundary conditions are all

unaltered after rotating it by an arbitrary angle with respect to a straight line––the axis. If this axis is set as

the z-axis in a cylindrical coordinate system––Orhz, the geometry, physical properties and boundary con-

ditions of an axi-symmetric structure are independent of h.
In a three-dimensional continuous system, the eigen-value equation and boundary conditions of a axi-

symmetric structure are expressed as follows:
Lr;h;zðr; zÞ½uðr; h; zÞ; vðr; h; zÞ;wðr; h; zÞ� � x2M r;h;zðr; zÞ½uðr; h; zÞ; vðr; h; zÞ;wðr; h; zÞ� ¼ 0 in X

Br;h;zðr; zÞ½uðr; h; zÞ; vðr; h; zÞ;wðr; h; zÞ� ¼ 0 on oX
ð53Þ
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where X represents a three-dimensional domain in the cylindrical coordinate system Orhz. u, v, w denote the

displacements in the direction of r, h and z respectively, and Lr;h;z, M r;h;z, Br;h;z denote elastic, inertia and

boundary condition differential operator matrices respectively. By virtue of the axi-symmetry, all the co-

efficients of these operator matrices are independent of h.
For a two-dimensional problem (e.g. circular plane membrane, plate, and rotational shell), the coor-

dinates are ðr; hÞ or ðh; zÞ. For a one-dimensional problem (e.g. circular ring), the coordinate should only be

h. In addition, in some problems, only the displacement of u and v (in plane membrane problem) or w (in

bending plate problem) appear in Eq. (53).

6.2. Properties of modes

In the following analysis of a axi-symmetric structure, the most complex case, a three-dimensional elastic

body with displacements u, v, and w, is considered. Due to the axi-symmetry, the displacements of the
structure possess the periodicity of 2p with respect to h, which thus can be expanded into Fourier series of h
as follows:
uðr; h; zÞ ¼
X1
n¼0

½Unðr; zÞ cos nh þ U 0
nðr; zÞ sin nh�

vðr; h; zÞ ¼
X1
n¼0

½Vnðr; zÞ cos nh þ V 0
n ðr; zÞ sin nh�

wðr; h; zÞ ¼
X1
n¼0

½Wnðr; zÞ cos nh þ W 0
n ðr; zÞ sin nh�

ð54Þ
Lr;h;z, M r;h;z, Br;h;z are linear operator matrices and all of their coefficients are independent of h. Substituting

Eq. (54) into Eq. (53), due to the orthogonality of cos nh, sin nh, the harmonic wave of different orders

is uncoupled. Therefore, the 3-dimensional eigen-value problem (53) can be simplified into a series of 2-

dimensional ones:
Lr;h;zðr; zÞ½Un cos nh þ U 0
n sin nh; Vn cos nh þ V 0

n sin nh;Wn cos nh þ W 0
n sin nh�

� x2M r;h;zðr; zÞ½Un cos nh þ U 0
n sin nh; Vn cos nh þ V 0

n sin nh;Wn cos nh þ W 0
n sin nh� ¼ 0 in X

Br;h;zðr; zÞ½Un cos nh þ U 0
n sin nh; Vn cos nh þ V 0

n sin nh;Wn cos nh þ W 0
n sin nh� ¼ 0 on oX

ð55Þ
In sequence, the modes of the structure have the form:
Un ¼
uðr; h; zÞ
vðr; h; zÞ
wðr; h; zÞ

2
4

3
5 ¼

Unðr; zÞ
Vnðr; zÞ
Wnðr; zÞ

2
4

3
5 cos nh þ

U 0
nðr; zÞ

V 0
n ðr; zÞ

W 0
n ðr; zÞ

2
4

3
5 sin nh n ¼ 0; 1; 2; . . . ð56Þ
It should be noted that the structure is also symmetric with respect to any plane that contains the axis. If

we use another cylindrical coordinates system Or0h0z0, where only the direction of h0 is converse with that in

the original coordinates, and others are kept unaltered, the eigen-value problem expressed in the new
coordinate system is
L0
r0;h0;z0 ðr0; z0Þ½u0ðr0; h

0; z0Þ; v0ðr0; h0; z0Þ;w0ðr0; h0; z0Þ� � x2M 0
r;h;zðr0; z0Þ½u0ðr0; h

0; z0Þ; v0ðr0; h0; z0Þ;w0ðr0; h0; z0Þ� ¼ 0

in X

B0
r0 ;h0;z0 ðr0; z0Þ½u0ðr0; h

0; z0Þ; v0ðr0; h0; z0Þ;w0ðr0; h0; z0Þ� ¼ 0 on oX

ð57Þ

where u0, v0, and w0 represent the displacements and are the functions of r0, h0, and z0. They have following

relationship with u, v, w,
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u0ðr0; h0; z0Þ ¼ uðr;�h; zÞ
v0ðx0; h0; z0Þ ¼ �vðr;�h; zÞ
w0ðx0; h0; z0Þ ¼ wðr;�h; zÞ

ð58Þ
Because of the symmetric property mentioned above, the following relationships are satisfied,
L0 ¼ L; M 0 ¼ M; B0 ¼ B ð59Þ
Eqs. (58) and (59) indicate that
U�
n ¼

uðr;�h; zÞ
�vðr;�h; zÞ
wðr;�h; z

2
4

3
5 ¼

Unðr; zÞ
�Vnðr; zÞ
Wnðr; zÞ

2
4

3
5 cos nh �

U 0
nðr; zÞ

�V 0
n ðr; zÞ

W 0
n ðr; zÞ

2
4

3
5 sin nh ð60Þ
is also the eigen-vector of eigen-value problem (53), which is associated with the same eigen-value as eigen-

vector expressed in (56) is.

Therefore, the linear combinations of Un and U�
n

Uns ¼
1

2
½Un þU�

n� ¼
Unðr; zÞ cos nh
V 0
n ðr; zÞ sin nh

Wnðr; zÞ cos nh

2
4

3
5 ð61Þ

Una ¼
1

2
½Un �U�

n� ¼
U 0

nðr; zÞ sin nh
Vnðr; zÞ cos nh
W 0

n ðr; zÞ sin nh

2
4

3
5 ð62Þ
are the modes corresponding to the same frequency. Eqs. (61) and (62) represent symmetric mode and anti-
symmetric mode, respectively.

Moreover, because of the axi-symmetric nature of the structure, if we rotate the mode expressed in (61)

by p=2n, we obtain
Una ¼
Unðr; zÞ sin nh
�V 0

n ðr; zÞ cos nh
Wnðr; zÞ sin nh

2
4

3
5 ð63Þ
Concerning an axi-symmetric structure, we come to two conclusions:

First, the modes of an axi-symmetric elastic body have the property of a harmonic wave in direction of h.

For each wave number n (n ¼ 0; 1; 2; . . .), there are two groups of modes, symmetric modes and anti-

symmetric modes, as expressed in Eqs. (61) and (63) respectively, both of which correspond to the same
frequencies. Moreover, the anti-symmetric mode with wave number n can be obtained by rotating the

symmetric mode by p=2n.

Second, substituting Eq. (61) into Eq. (53) yields the governing equation of Un, V 0
n , and Wn with para-

meter n:
Lr;z;n½Unðr; zÞ; V 0
n ðr; zÞ;Wnðr; zÞ� � x2M r;z;n½Unðr; zÞ; V 0

n ðr; zÞ;Wnðr; zÞ� ¼ 0 in X

Br;z;n½Unðr; zÞ; V 0
n ðr; zÞ;Wnðr; zÞ� ¼ 0 on oX n ¼ 1; 2; . . .

ð64Þ
Thus, infinite number of eigen-value problems of two dimensions replaces the eigen-value problem of three

dimensions.

For two-dimensional axi-symmetric structures such as a rotational shell and a circular plate, and one-
dimensional axi-symmetric structure like a circular ring, their modes possess the special forms of Eqs. (61)

and (63).
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6.3. Application

In practice, we only need to acquire a limited number of modes of an axi-symmetric structure. Therefore,

when we seek to solve the eigen-value problem of an axi-symmetric structure using numeric method, we can
simplify Eq. (53) with a limited number of eigen-value problems as expressed in Eq. (64). The dimensions of

the problem can thus be reduced by one, and the number of DOF required for solving a discrete problem

will be considerably decreased.

If we want to obtain the modes and natural frequencies of an axi-symmetric by experiment, we only need

to measure the data on a contour to the detected wave number, and the data on a certain plane containing

the axis of a three-dimensional body (or on a generatrix of a two-dimensional structure, or on a point of

one-dimensional structure). Then by applying the properties of the mode as expressed in Eqs. (61) and (63),

we can know the modes of the whole structure.
7. Forced vibration problem for repetitive structures

For forced vibration problems of repetitive structures, the force vector can be transformed using the
same method as applied to the generalized displacements mentioned in the previous sections. Therefore, the

forced vibration problem of the whole structure is simplified into a group of uncoupled forced vibration

problems of a single substructure.

For example, for a symmetric structure, its forced vibration equation is
Lwi þM €wwi ¼ F i in X i ¼ 1; 2 ð65Þ
If the given force vector is transferred as follows:
F ¼ F1

F2

� �
¼ Sf ¼ 1ffiffiffi

2
p I I

I �I

� �
f 1

f 2

� �
¼ 1ffiffiffi

2
p I

I

� �
f 1 þ

1ffiffiffi
2

p I
�I

� �
f 2 ð66Þ
Then in inverse,
f ¼ f 1

f 2

� �
¼ STF ¼ 1ffiffiffi

2
p I I

I �I

� �
F1

F2

� �
ð67Þ
Substituting Eqs. (7) and (66) into Eq. (65) yields
Lqi þM€qqi ¼ f i in X i ¼ 1; 2 ð68Þ
Similar method can be used in other kinds of repetitive structures.
8. Conclusions

In this paper, we discussed the free and forced vibrations of symmetric structures, cyclic periodic

structures, linear periodic structures, chain structures, and axi-symmetric structures. The properties of

modes for continuous models of repetitive structures are obtained by applying a series of transformation to

the displacement function fields of these models. Compared to the research for discrete systems, the present

discussion for continuous systems has more significance in theory.

According to these reduction approaches, the problem of calculating the natural and forced vibrations of
the whole structure is simplified by calculating a group of relevant problems on a single substructure.

Moreover, taking advantage of the specific properties of the modes, the vibration experiment can be
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simplified as well, which measurement only need to be performed on one substructure and on one point of

an adjacent substructure. The effort of calculation and measurement is thus considerably reduced.

Utilizing the criterion that the data violating the qualitative properties are sure to be incorrect, the

qualitative properties of the modes can be used to exam the correctness of the mode data obtained from
calculation and experiment and the reasonableness of the design data given in inverse problem in vibration.

In addition, they can be used to identify the reasonableness of the discrete models of the structures. For

instance, the qualitative properties of modes for discrete models of symmetric, cyclic periodic, and chain

structures, as derived by Chan et al. (1998) and Wang and Wang (2000) are the same as those for con-

tinuous models, if: (1) the displacement function fields, w, wr, q, qr, in Eqs. (7), (15) and (41), of both the

whole structure and the substructures of a continuous model are replaced respectively with the generalized

displacement vectors of discrete models, and (2) the dimensions of unit matrices I in these same equations

are set respectively as the dimensions of generalized displacement vectors of substructures of corresponding
discrete model. These facts show that the discrete models of these considered repetitive structures are

reasonable in terms of their qualitative properties.
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